Extensive Properties of the Complex Ginzburg-Landau Equation

نویسندگان

  • Pierre Collet
  • Jean-Pierre Eckmann
چکیده

We study the set of solutions of the complex Ginzburg-Landau equation in R, d < 3. We consider the global attracting set (i.e., the forward map of the set of bounded initial data), and restrict it to a cube Q L of side L. We cover this set by a (minimal) number N QL (ε) of balls of radius ε in L∞(Q L ). We show that the Kolmogorov ε-entropy per unit length, H ε = lim L→∞ L −d log N QL (ε) exists. In particular, we bound H ε by O ( log(1/ε) ) , which shows that the attracting set is smaller than the set of bounded analytic functions in a strip. We finally give a positive lower bound: H ε > O ( log(1/ε) ) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.

The structure and dynamics of vortex filaments that form the cores of scroll waves in three-dimensional oscillatory media described by the complex Ginzburg-Landau equation are investigated. The study focuses on the role that twist plays in determining the bifurcation structure in various regions of the (alpha,beta) parameter space of this equation. As the degree of twist increases, initially st...

متن کامل

Synchronization and control of coupled ginzburg-landau equations using local coupling

In this paper we discuss the properties of a recently introduced coupling scheme for spatially extended systems based on local spatially averaged coupling signals [see Z. Tasev et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. (to be published); and L. Junge et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, 2265 (1999)]. Using the Ginzburg-Landau model, we performed an extensive numerical ex...

متن کامل

Stationary modulated-amplitude waves in the 1-D complex Ginzburg-Landau equation

We reformulate the one-dimensional complex Ginzburg-Landau equation as a fourth order ordinary differential equation in order to find stationary spatiallyperiodic solutions. Using this formalism, we prove the existence and stability of stationary modulated-amplitude wave solutions. Approximate analytic expressions and a comparison with numerics are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998